The Energy Landscape for the Self-Assembly of a Two-Dimensional DNA Origami Complex.
نویسندگان
چکیده
While the self-assembly of different types of DNA origami into well-defined complexes could produce nanostructures on which thousands of locations can be independently functionalized with nanometer-scale precision, current assembly processes have low yields. Biomolecular complex formation requires relatively strong interactions and reversible assembly pathways that prevent kinetic trapping. To characterize how these issues control origami complex yields, the equilibrium constants for each possible reaction for the assembly of a heterotetrameric ring, the unit cell of a rectangular lattice, were measured using fluorescence colocalization microscopy. We found that origami interface structure controlled reaction free energies. Cooperativity, measured for the first time for a DNA nanostructure assembly reaction, was weak. Simulations of assembly kinetics suggest assembly occurs via parallel pathways with the primary mechanism of assembly being hierarchical: two dimers form that then bind to one another to complete the ring.
منابع مشابه
Structural Dna Origami: Engineering Supermolecular Self-assembly for Nanodevice Fabrication
............................................................................................................................ vi LIST OF TABLES .................................................................................................................... x LIST OF FIGURES ................................................................................................................. xi LI...
متن کاملProgrammed two-dimensional self-assembly of multiple DNA origami jigsaw pieces.
We demonstrate a novel strategy of self-assembly to scale up origami structures in two-dimensional (2D) space using multiple origami structures, named "2D DNA jigsaw pieces", with a specially designed shape. For execution of 2D self-assembly along the helical axis (horizontal direction), sequence-programmed tenon and mortise were introduced to promote selective connections via π-stacking intera...
متن کاملDNA origami: synthesis and self-assembly.
DNA origami is an emerging technology for designing defined two- and three-dimensional (2D and 3D) DNA nanostructures. Here, we report an introductory practical guide with step-by-step experimental details for the design and synthesis of origami structures, and their size expansion in 1D and 2D space by means of self-assembly.
متن کاملSelf-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates.
A central challenge in nanotechnology is the parallel fabrication of complex geometries for nanodevices. Here we report a general method for arranging single-walled carbon nanotubes in two dimensions using DNA origami-a technique in which a long single strand of DNA is folded into a predetermined shape. We synthesize rectangular origami templates ( approximately 75 nm x 95 nm) that display two ...
متن کاملLipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures
Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed 'lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 10 2 شماره
صفحات -
تاریخ انتشار 2016